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Between the sound of static and water boiling.
For more than a thousand years the "science and the art of tones" called

music has been composed using mathematic intervals (Webster). Music's
popular definition includes rhythm: the periodic recurrence of accent with
symmetry of movement and accent (Webster). Access to music has increased
dramatically within the recent past thanks to the Internet, so composers have to
push harder than their predecessors to produce unique compositions. The
study of math as a basis for music was thoroughly explored in the 1940's when
Joseph Schillinger published more than a dozen books on music composition.
His research introduced algorithmic composition, a groundbreaking idea that
by following a simple formula one could generate rhythm in music. Now, with
the use of computers, composers are using chaos theory to enhance
algorithmic music composition. Chaos is seemingly unpredictable behavior due
to high sensitivity of initial conditions. Weather is considered chaotic, for
example, a butterfly's sneeze affects the weather enough to cause a hurricane
weeks later. Rhythm in music can be adapted to chaos theory using fractals. A
fractal is a shape independent of scale (scaling invariance), and self-similar
meaning it can be subdivided into parts, each of which is a smaller copy of the
whole (Taylor). Fractals can form basic rhythm using self-similarity and scaling
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invariance. 18th century composers like Bach and Mozart used these ideas for
their compositions, two centuries before Benoit Mandlebrot coined the term
"fractal." Using chaos theory for algorithmic composition one can create an
endless variety of rhythmic patterns for music.

Patrick Swickard, in his report titled    Fractals, Chaos, and Music    covers
discoveries between fractals and music, controversies over conflicting
discoveries, relations between mathematics and music, and Joseph Schillinger's
work on music. Swickard provides some insight into the history of mathematics
and music starting during the 5th century BC. The Pythagoreans in Greece first
provided scientific means of expressing musical intervals as numeric
proportions (Swickard).  More recently, Joseph Schillinger, a music theorist, did
an intense mathematical study of music in between the 1920’s and 1930’s.
Schillinger offers a synopsis of the three fundamental periods in the history of
musical instruments: a mammal or man uses the organs of his body, the man
starts to use objects of the surrounding world (shells, horns) and then the
discovery of scientific methods of sound production (11). His example
describes a scene that sound started as a spontaneous reflex of the vocal
chords induced by fear that then became a signal for approaching danger (13).
Schillinger's ideas on rhythmic design are from the modern tendency in science
that all physical phenomena are derivatives of the properties of space, where
time is one of the components. Therefore art or rhythm in this case, can be
measured and analyzed since it’s a derivative of the space-time continuum: "a
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design is rhythmic if analysis reveals the regularity in the sequence of its
components and their correlations" (365).

Shortly before Schillinger's death in 1943 he published a twelve-book
collection titled "The Schillinger System of Musical Composition," an example of
his passion for developing a scientific way to approach music with
mathematics. His writings laid the foundation for algorithmic composition, a
technique not expanded on for decades. Swickard’s report examines the
relationship between fractals and the Schillinger System of Musical Composition
using the following ideas of Schillinger: "There are two sides to the problem of
melody: one deals with the sound wave itself and its physical components and
with physiological reactions to it. The other deals with the structure of melody
as a whole, and esthetic reactions to it. Further analysis will show that this
dualism is an illusion and is due to considerable quantitative differences. The
shore-line of North America, for example, may be measured in astronomical, or
in topographical, or in microscopic values." (Swickard) Swickard points out that
the same argument was used years later by the founder of fractal geometry,
Benoit Mandelbrot, when describing the fractal nature of a coastline and how
the length seems to change depending on how finely it is measured (Swickard).

Published after Schillinger's death,     The Mathematical Basis of the Arts    is
his explanation of the mechanism of creatorship as it manifests itself in nature
and in the arts. Schillinger’s laws of rhythm, are described as general esthetic
laws that are based on two fundamental processes: the generation of harmonic
groups through interference, and the variation of harmonic groups through
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combinatory and involutionary techniques (4). He presents the idea that the art
of making music consists on arranging the motion of sounds (pitch, volume,
quality) so they appear to "organic, alive" (5). Schillinger describes the general
method of producing rhythmic sequence is based on the physical phenomenon
known as interference. For example, a sound wave with a length or period of
three could be combined with another wave with a period of four. The
combined attacks of both waves, when divided by the least common
denominator, would form a new rhythm with notes of length three, one, two,
two, one, three. Swickard describes this by stating “simple rhythms could be
found by sort of superimposing two waves of different periodicities and
forming a new wave that contained the attacks of both waves." (Appendix,
Figure 1) Swickard also points out the Schillinger method to produce rhythmical
patterns using distributive powers. One example of distributed involution
grouping consists of taking a series of fractions that added up to 1 in the form
(a+b), and squaring it to come up with a new pattern (Swickard). Schillinger's
idea of rhythm fits the form a fractal would take.

During the 1970’s Richard Voss and John Clarke devised an even more
general mathematical study of music, the physical sound of the audio as
played, rather than the written structure. They used spectral density, the quality
measured by monitoring the voltage used to drive the speakers through which
the audio signal is played. Spectral density is used to analyze random signals or
noise and is used to determine the behavior of a quantity varying over time.
The autocorrelation function was also used to measure how the fluctuations in
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the signal related to previous fluctuations. Swickard points out that the
concepts of spectral density and autocorrelation have been explained by
Mandlebrot in the following manner: If one takes a tape recorder, he argues,
and records a sound, then plays it faster or slower than normal, the character of
the sound often changes considerably. Some sounds, however, will sound the
same as before if they are played at a different speed; one only has to adjust
the volume to make it sound the same. These sounds are called "scaling
sounds." Swickard provides examples of two different types of scaling sounds,
white noise and Brownian noise:

The simplest example of a scaling sound is white noise, which is
commonly encountered as static on a radio. This is caused by the thermal
noise produced by random motions of electrons through an electrical
resistance. The autocorrelation function of white noise is zero, since the
fluctuations at one moment are unrelated to previous fluctuations. If
white noise is recorded and played back at a different speed, it sounds
pretty much the same: like a "colorless" hiss. In terms of spectral density,
white noise has a spectral density of 1/f^0.

Another type of scaling sound is sometimes called Brownian noise
because it is characteristic of Brownian motion, the random motion of
small particles suspended in a liquid and set into motion by the thermal
agitation of molecules. Brownian motion resembles a random walk in
three dimensions. Since where a particle goes next does depend on its
current position, Brownian motion is random but still highly correlated.
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Similarly, Brownian noise is much more correlated than white noise, since
the fluctuations at a point in time do depend on previous fluctuations and
cannot stray too far from them in too short a time. Brownian noise has a
spectral density of 1/f^2. ()

Voss and Clarke's investigation of scaling sounds determined the spectral
density of the audio signal did not provide the results they were interested in,
instead they decided to monitor the power provided to the speakers rather than
the voltage. With this new method, the team discovered the audio power
exhibited 1/f behavior, between white and Browning noise. Swickard presents
the idea that 1/f spectral density is also present in other phenomena such as
electronic flicker noise, sunspot activity, uncertainties in time as measured by
an atomic clock, the wobbling of the Earth’s axis, traffic flow on freeways, and
even the flood levels of the river Nile. This spectral density behavior of 1/f also
matches different kinds of music such as Bach’s First Brandenburg Concerto
and piano rags of Scott Joplin, even different radio stations demonstrated this
behavior: rock, classical, and even a talk station (Swickard).

Once Voss and Clarke found music exhibited 1/f behavior, they decided
to compose music using the noises they studied. Using the groundwork laid by
Schillinger, Voss and Clarke formulated an algorithmic music composition
technique for the application of scaling sounds. Compositions based on white,
1/f, and Brownian noises were played for listeners who commented on the
pieces. The listeners noted that the white music seemed too random, and the
Brownian noise seemed too correlated. The 1/f music seemed the most like



Huvard 7

regular music to listeners, so the team of Voss and Clarke took this as more
evidence for the 1/f nature of music. Voss then started to experiment with
algorithmic composition of 1/f music using natural phenomena as starting
points, one composition was derived from annual flood levels of the Nile.

Written in 1924, Lejaren Hiller’s    Experimental Music    characterizes the
process of musical composition as involving a series of choices of musical
elements from a variety of musical materials and asserts that the act of
composing can be thought of as the extraction of order out of a chaotic
multitude of available possibilities. Hiller provides insight on musical
composition as the extraction of order within chaos with the idea formulated
during the 14th century BC by Aristoxenus who stated: "The voice follows a
natural law in its motion and does not place the intervals at random"" (16).
Hiller also points out that Aristoxenus also recognized the necessity of ordering
in music and language: "The order that distinguishes the melodious from the
unmelodious resembles that which we find in the collocation of letters in
language. For it is not every collocation but only certain collocations of any
given letters that will produce a syllable" (17). Hiller quotes contemporary
author Igor Stravinsky's Poetics of Music to illustrate defense for the principle of
opposing order and design to chaos: "… we feel [the necessity] to bring order
out of chaos, to extricate the straight line of our operation from the tangle of
possibilities" (17); that "… we have recourse to what we call order … order and
discipline" (17). Hiller presents Stravinsky's definition of art as the "… contrary
of chaos. It never gives itself up to chaos without immediately finding its living
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works, its very existence threatened" (17). Hiller explains that the selection of
certain materials out of a random environment makes it obvious that all music
falls between order and chaos and changes in musical style involve fluctuations
towards one extreme or the other (17). Hiller expands on this idea with a
passage from Leonard Meyer: "shape may, from this point of view, be regarded
as a kind of stylistic 'mean' lying between the extremes of overdifferentiation
and primordial homogeneity" (18).

David Little’s     COMPOSING WITH CHAOS; Applications of a New Science for
Music    points out concepts and mathematical models from Chaos Science can be
applied to composition using examples of his own works. Little starts by
discussing the work of Edward Lorenz, a meteorologist during the 1960’s, who
modeled the Earth’s weather on a computer using proven physical laws of gas
and water behavior. Lorenz encountered a problem: if he started the simulation
with initial conditions that were slightly different, the weather would diverge
and end up completely different. Lorenz determined that small errors in
measurements would multiply, leading to his theory, the “Butterfly Effect,” that
a butterfly stirring its wings in Peking could start a storm over New York the
next month (Little). Later, Lorenz developed a mathematical model for the
behavior of heated fluid also called convection. This equation for the model of
convection used three variables in a non-linear relationship (might show bends,
reversals, etc., opposed to a linear relationship that shows a straight line.) This
new function calculates new values for each variable dependent on its last
value. These changing variables can be traced using a phase diagram. Points on
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this diagram represent the physical state of this system in three dimensions. If
a system heads towards a stable state, its phase diagram will localize to a point
called the attractor. (Appendix, Figure 2) Little explains that “Lorenz’s model
appears to be chaotic, with a kind of infinite complexity; it has a strange
attractor!” (Little). As it turned out, Lorenz’s model loops endlessly without
repeating or crossing itself, flipping unpredictably between sides. However, it is
not random and remains within certain bounds: a pattern emerges resembling
butterfly wings. (Appendix, Figure 3) This was a discovery that is recurrent in
many natural phenomena: order within chaos (Little).

Using these ideas, David Little composed Harpsi-kord for tape and
harpsichordist is in 1988 with the central idea of order within chaos. This piece
was composed swinging between the poles like the butterfly effect, from
regular to irregular, loud to soft, atonal to harmonic, and use of timbre from an
ancient instrument or electronic sound. The harpsichordist relates to the tape in
a somewhat improvisational manner, with timing and pitch notated, but the
rhythm and order improvised. Another composition by Little in 1988, Shuffle,
uses a computer to compose, produce and manipulate the music using an 88-
note chromatic scale. The computer stores each note, controlled by MIDI
information that stores pitch, timing/length, and loudness into memory units.
The data is then shuffled around by the compute, for example two randomly
chosen memory units for pitch were exchanged. Output is used for input as a
sort of feedback process, with each cycle becoming more diffuse and irregular.
The ordered chromatic scale slowly degenerates into a super-serial shuffled
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mix, with the final state very complex, dependent on the cumulative effect of
many small random choices. As a result, Shuffle is a musical model of the
butterfly effect, a composition described in chaos theory as a sensitive
dependence to initial conditions. (Little)

Another technique found in chaotic composition uses the mathematical
model for population growth, called the logistic difference equation. First
derived in 1845 by P.F. Verhulst, the basis for Verhulst’s work was the
Malthusian Model describing unbounded growth of a population where
xnew=a*x. This formula finds the population of a new generation by
multiplying the number in the last generation by a productivity factor. For
example assume that the population doubles each generation, therefore a=2.
Starting with 2 parents, they would have 4 children, 8 grandchildren, etc., and
by generation 10 there would be 1024 siblings. Verhulst wanted to make a
more realistic model population growth so he assumed that in nature the larger
a population gets the less productive it becomes. As a result, his model limited
the upper limit of a population to 1, so the room left over for a new generation
is 1-x, the correction factor to unbounded growth. Therefore, the Verhulst
Model for population growth becomes: xnew=a*x*(1-x). A new generations
population is equal to the Malthusian growth factor times the old population
scaled down by the amount of room available for growth (Little). When the
productivity factor is set at 2 with a low seed value like 0.001, population x
rises and levels off at 0.5. This might be expected in nature with animals with
healthy productivity (Little). The initial period is rapid growth, eventually
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stabilizing. Once the productivity factor is set to a higher value such as 3.2, x
grows rapidly at first but doesn’t stabilize, instead it alternates between two
values endlessly, regardless of the seed value. After a is set larger than
3.569946 x starts to fluctuate chaotically from one value to the next,
sometimes moving between values only to spin off again. This is another
example of chaotic behavior occurring in nature, with an animal with high
productivity that outgrows the environment to support itself, the population
crashes and builds up again. This model does show some kind of regularity
with x-values going up and down but never repeating exactly. While searching
for the exact values of a where the behavior of the model changed-where x
values would settle down eventually to one, two for or eight values, Mitchell
Feigenbaum discovered a constant ratio between the a values (Little). Other
mathematical formulas such as the onset of turbulent flow also showed these
doublings and the same ratio between them. This discovery is considered a
universal constant, like the constant of gravity, the speed of light, or the weight
of an electron. Increasing a past 3.83 in the Verhulst model, the chaotic
behavior stops and x circles between 3 values. Increasing a past this, chaotic
behavior reoccurs until a=4, our upper limit because values of a greater than
this would produce x values greater than 1 which exceeds the definition of the
maximum population. Using a computer, a graph can show how the Verhulst
formula behaves for all settings of the a value. (Appendix, Figure 4)  The
pattern contains its own replica within itself. (Appendix, Figure 5) This kind of
nested pattern is called a fractal, derived from the Latin adjective fractus,
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meaning irregular or broken by Mandelbrot . Fractals are characterized by
intricate patterns within patterns, with self-similarity on any scale. These
fractals occur in natural phenomena and shapes such as trees and clouds.
Little’s composition Fractal Piano 6 uses the Verhulst model, known as the
logistic difference equation as inspiration. For this composition, values
obtained from iteration of the equation were encoded using non-linear
mapping into pitches, lengths, and loudness. This MIDI data was expanded and
compressed with regard to time and layered in different ways using fractal
structures. For example, an on/off pattern was used to create fragmented
density in parts. (Little)

Chaos, Self-Similarity, Musical Phrase and Form     , a record of exploration
by Gerald Bennett, is an examination of two aspects of chaotic systems: self-
similarity and scaling invariance and his reflection on their appropriateness in
musical composition. Bennett describes different musical uses for the logistic
difference equation, using the envelope to derive pitch or amplitude, to drive a
filter or describe the formal evolution of a section or an entire piece. He
describes Gary Nelson's composition "The Voyage of the Golah Iota": how the
function's envelope determines the form of composition and how the function
drives a granular synthesis routine to produce sound.

Gary Nelson describes granular synthesis techniques, logistic maps
(chaos), genetic algorithms and other methods of composition used in his own
works for his paper     Wind, Sand, and Sea Voyages: An Application of Granular
Synthesis and Chaos to Musical Composition    . Nelson presents granular
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synthesis as "a large number of small sounds […] assembled in masses in a
manner that parallels the pointillist painters who created images from small
colored dots" (Nelson). These frequencies, amplitudes, timbres, and the
distribution of grains form larger sound structures. His composition, The
Voyage of the Golah Iota uses the logistic difference equation for a source of
the notes. Nelson varies the a value from 1.0 to 4.0 then back to 1.0 during the
course of the song. The values of x were iterated, scaled and then mapped onto
a 7 octave pitch range, taking advantage of the bifurcations when a is
increased, leading to and away from chaotic behavior.

It is important to note that the central characteristics of chaotic systems,
scaling invariance and self-similarity were used in musical compositions well
before the ideas, terms, and definitions were fully developed. Bennett uses
Johann Sebastian Bach's Kunst der Fuge from 1749 as an example: "The choral
melody, slightly ornamented, is in the upper voice. The other voices prepare for
the entry of the choral by imitating the melody in diminution (twice as fast). The
alto voice plays the inversion of the melody, and most of the other
accompanying material is derived directly from the opening measures. The
entire piece consists of three more phrases, all treated in the same way." () In
this example, self-similarity consists of the repeated use of the same motives
within a larger section of the whole. Bennett provides insight into Bach's late
composition, the title: "I herewith stand before Thy throne" and points out Bach
signs his name numerologically in the choral melody twice. (Bennett)
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Using ideas from Chaos Science, twenty-first century composers will
realize the benefits of fractals in music. Electronic music synthesis and its
human interaction will evolve beyond the traditional analog instrument. The
basis of these innovations are thanks to the work of Joseph Schillinger in the
early twentieth century. The thoughts of Hiller and Stravinsky express the need
for human intervention during composition of algorithmic music. The
experimentation by Voss and Clarke introduced many to a new genre when
electronic music can be created using mathematic sound synthesis, even
reflecting occurrences in nature. David Little and Gary Nelson exploited fractals
for composition in the late twentieth century. As electronic age progresses the
need for human intervention will lessen during composition. Ideas of artificial
intelligence, cellular automation, granular synthesis, and fractals will merge
with electronic synthesis.
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Appendix
Figure 1 (Swickard)

period 3

period 4

combined interference
Figure 2 (Little)

The Butterfly effect
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Figure 3 (Little)

Lorenz Function
Figure 4 (Little)

Verhulst model for population growth.
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Figure 5 (Little)

Verhulst model magnified at bifurcation point.


